设为首页收藏本站--- 驰名中外的国际土木工程技术交流平台!

东南西北人

 找回密码
 注册

QQ登录

只需一步,快速开始

总共8789条微博

动态微博

AUD$1=500 Gold Coin
本站帖子精华之精华汇总 Best of the Best英语口语、听力、翻译、考试学习经验交流与探讨1000多土木工程类行业软件、计算表格和计算工具免费下载东南西北人网站QQ精英群 QQ189615688
中国土木工程师手册(上中下)东南西北人英文资料走马观花500多专业手册、工程手册100多个专业词典大汇总如何获取积分和金币?
精彩施工和土木工程技术视频东南西北人英汉对照资料汇总支付宝充值各版块精彩讨论贴汇总!银行汇款充值
查看: 165|回复: 1

山区高速公路建设地质概述等

[复制链接]
鲜花(326) 鸡蛋(0)
牧马人 发表于 2016-1-17 15:36:22 | 显示全部楼层 |阅读模式
山区高速公路建设地质概述
关键词:山区高速公路 勘察 设计 施工 运营 工程地质条件 地质病害
  1、概述       
  由于国民经济的发展和路网完善的需求,高速公路逐步进入山区。高速公路由于其线形指标高,工程艰巨,投资巨大,对自然环境的破坏也非常严重。随着环境保护理念的日益深入人心,对于山区高速公路的勘察设计、施工运营等方面的环保要求也越来越高。山区公路环境载体主要是自然环境,也是地质环境。山区一般地形地质条件复杂,地质环境脆弱,地质灾害多发,高速公路的建设不可避免的要切坡、填沟、打洞(隧道),对地质环境造成严重破坏,处理不好还会诱发和加剧各种地质灾害,增加公路建设投资,影响工期,甚至给运营阶段带来严重的安全隐患。因此山区高速公路的环保主要是地质环境的保护和地质灾害的防治。
  要建设一条兼顾交通、环保、生态等方面要求的高标准的山区高速公路,应该重视和加强地质工作。地质工作应贯穿于设计、施工和运营的全过程。对地质现象和规律的认识(岩土工程勘察工作)是由面到线、由线到点、由表及里、由粗到细、由宏观到微观,逐步深入的,根据不同阶段应采取不同的方法和手段。
  2、勘察设计阶段
  地质条件是客观存在的,山区高速公路在自然地质环境中穿行,并对地质环境进行改造,应该认识地质规律,尊重地质规律,在设计中充分考虑地质因素,遵循地质原则,从源头上尽量减少山区高速公路对自然环境的破坏,并且为施工和运营提供良好的条件。
  2.1工可阶段——贯彻地质选线的原则山区公路地质选线主要受到地形和不良地质现象的制约,主要的不良地质现象有滑坡、泥石流、岩崩、岩溶、岩堆(坡积层)、软弱土、膨胀土、湿陷性黄土、冻土、水害、采空区以及强震区(高地应力)等。本阶段应尽可能详细地收集区域构造地质、岩石地层、水文地质、工程地质、地震地质、环境地质等方面的资料,利用遥感资料(卫片和航片),编制中比例尺(1:5万或1:10万)工程地质图和地质灾害(不良地质现象)分布图,图上标注大的地质构造(主要是断层)、重大的地质病害体,分析区域性的地质灾害发生条件,进行初步的地质灾害评估,配合路线方案设计,进行必要的现场踏勘和重点路段的调查,反复对比,优选出工程地质条件最好、地质灾害最少、工程建设对地质环境的不利影响最小的路线走廊带,真正贯彻地质选线的原则。对于滑坡、崩塌、岩堆、泥石流、岩溶、软土、泥沼等严重不良地质地段和沙漠、多年冻土等特殊地区,一般情况下路线应设法绕避。
  2.2初设阶段——突出重大地质病害对路线方案的制约确定路线方案前应对沿线地质构造带、断层、岩石的层理情况、地质病害的分布及范围等,通过对遥感地质判释资料以及不同勘测阶段的勘探、调查资料的分析,研究路线通过方案并不断优化。对地质较为复杂地段还应注意在设线后诱发并加剧地质病害的可能性,谨慎的确定路线的线位和采取的工程措施。地质技术人员应配合路线设计师作好地质咨询工作,可以沿初步拟定的路线线位,进行全线踏勘,对重点工点进行地质调查,得出初拟线位沿线的基本工程地质情况,评估路线方案的可行性,发现重大不良地质地段或预测工后会出现难以治理的地质病害的路段要及时反馈信息,以便尽快调整路线线位。基本确定路线方案后,及时委托有资质的单位进行建设用地地质灾害危险性评估工作,并进行大比例尺(1:1万)的地质遥感解译及地质灾害调查和工程地质调绘工作,编制1:1万工程地质图和路线区域地质病害现状图。图件的重点是地质灾害和重要工点的工程地质条件,要有针对性,要突出重点,不可以拿1:5万地质图放大。现在委托地质部门做的图件,有些不能称为工程地质图,只能称为基本地质图(工程地质分区太笼统、工程地质条件的论述太简略)。地质灾害评估工作不能够代替1:1万工程地质图的编制,但二者可结合进行,以节约时间和经费。
  很多地质灾害(滑坡、泥石流等)由于植被覆盖、后期人工改造以及观察角度和范围有限等原因,在现场难以判断。通过遥感资料(如航片)可以从宏观上观察全貌,合理的解译,有利于对此类不良地质体的正确认识。
  当工作中发现仍有重大的地质病害存在或有潜在的重大地质病害时,必须及时调整线位。对于重大的地质病害应尽量绕避,实在无法绕避的要考虑工程措施的可能性与可靠性,尽量在路线的平纵面优化上下功夫(采用分离式路基、用桥隧构造物通过、从滑坡体上部通过、半路半桥等),避免高填深挖,以减少对地质环境的破坏,提高工程措施的可靠性和安全度。对地质病害应以防为主,以治为辅,能避当避,即使增加工程造价也是值得的。
  以安徽省徽杭高速公路为例,该路全长约80km,有四分之三路段位于山区,由于勘测时间较早,对山区高速公路特点认识不足,以投资为主要控制因素,其中有一半左右的路段基本沿区域性的三阳断裂带布设。受构造影响,岩体风化破碎严重,并且沿线分布有雄村滑坡、朱村滑坡等规模较大的不良地质体。施工开挖后,出现大量的不稳定边坡,甚至诱发了部分滑坡。对于部分地质病害路段及时调整线位,进行了避让,而更多的病害段只能采取治理措施,结果造价大幅攀升,严重影响了工期,并且治理效果也难以预测。
  必要时应增加技术设计阶段,对重大地质病害路段进行深入勘察,确定路线可行性。
  2.3施工图设计阶段——详查工点地质条件通过初步设计阶段的各种地质工作,已经基本查明路沿线的地质条件,但是工作深度和广度还不够。本阶段应详查工点地质(桥位、隧道、深路堑、高填路堤、陡坡路堤、支挡构造物),进行重要工点1:2000地质测绘。采用调查、测绘、槽探、坑探、钻探、物探等综合勘察手段。查明场地岩土体组成、性质、分布以及风化层、不良地质、特殊性岩土等工程地质条件在路线纵横方向的变化。以前对于桥位和隧道等构造物工点地质勘察较为重视,但是对于深路堑和陡路堤、斜坡路堤、支挡构造物等路基方面的工点也必须加强勘察,特别是高边坡和不良地质体的勘察和预测。另外对于筑路材料料场和弃土场的勘察一定要重视,以前山区公路曾出现过取土、弃土场所不合理,乱挖乱弃,破坏环境,导致水土流失的事例。
  除了详细的地质勘察工作之外,还要贯彻综合设计原则,在路线设计的各个阶段,对工程地质条件要有充分的了解,保证路线方案的科学性。对地质资料要充分利用,桥位、隧道、路线各有一套地质资料,但彼此经常脱节。比如当桥隧相连时,隧道勘察发现有不良地质现象,桥梁设计人员却不知道,还把桥台置于其上。因此加强各专业之间的交流沟通,互相学习。从事路线、隧道、桥梁设计的人员要尽量多地掌握一些基本的地质知识,以有利于对地质资料的合理使用。
  3、施工阶段——遵循信息化施工、补充勘察、动态设计原则
  由于地质条件的复杂性和勘察周期的制约,有些复杂场地(岩溶、破碎带、岩性纵横向差异大的地区)或地形困难场地(陡坡、鱼塘等)在设计阶段难以布置充分的勘察工作量,无法查清场地详细工程地质条件。在施工期间,可以进行补充勘察,如对岩溶发育区或岩性差异大的场地逐桩钻探,对原进场困难场地通过施工便道进场钻探。施工中发现新的地质问题也要补充勘察。应该把施工期间的勘察工作视作设计期间勘察工作的重要补充。
  另外本阶段应遵循信息化施工(施工中监测)、动态设计的原则。隧道的超前预报、边坡的动态监测都是施工阶段必须要进行的工作。施工单位一定要配备过硬的地质技术人员,及时发现问题,不要等到地质病害已经发生才去治理,要有前瞻性、预见性,发现边坡、隧道等有失稳的趋势之后要立即反馈业主和设计单位,并及时采取合适的加固措施,避免边坡、隧洞大面积失稳。应该认识到,设计阶段的勘察工作对地质现象和地质规律的认识往往是不全面的,甚至是错误的,据此进行的设计只能称为预设计。在边坡或隧道断面开挖以后,很多问题才会发现,此时应有岩土工程技术人员在现场,对照原有的勘察设计方案,发现新的问题之后通过合理工序及时调整设计方案。等到问题已经发生才去采取措施,既多花了钱,又耽误了工期。
  目前施工单位的岩土工程技术人员也是极为缺乏的,有时由于不合理的施工方法导致或加剧了地质病害的发生和发展(如在破碎岩体上放大炮、自下而上开挖边坡等)施工期间的岩土工程监理工作目前还较为薄弱的,有丰富理论知识和实践经验的岩土监理工程师极为缺乏,使施工期间的地质病害预防工作远远达不到要求。
  4、运营阶段——加强敏感点监测
  山区高速公路运营期间也要高度重视地质工作。因为有些地质灾害的发生是一个长期的过程,应力释放或边坡的蠕变有些需要长达几年乃至十几年的时间,一次性治理有时并不能保证长治久安。因此对于一些在施工中出现病害的路段或重要工点要建立数据库,进行变形、位移和地下水的动态监测,定期巡查,建立防灾和预警系统,在雨季或洪水季节要加强对敏感点的监测。通过长期观测记录,还可以更深入的认识地质规律,分析地质病害的发生发展机理,预测发展趋势,发现有不利的趋势要及时采取措施。
  5、山区公路建设地质工作中存在的问题
  5.1前期阶段工可阶段对地质工作不够重视,地质遥感工作不做或精度不够,不能够贯彻地质选线的原则,导致选定的路线走廊带中地质病害多,处理难度大,给后期工作带来极大难度。
  初步设计阶段,由于路线方案调整较大,而工期紧张,因此很多勘察工作量作废,路线地质精度不够,部分工点缺少地质资料,给设计工作带来隐患,也使得施工图设计阶段路线方案有时发生较大调整。
  施工图设计阶段不做或漏做重要工点的1:2000地质测绘,或虽做了但精度不够;对一些地质病害研究不深,导致对一些重要工点的勘察深度不够;对于路线地质调查深度不够,导致一些地质敏感点遗漏,在施工中出现地质病害。构造物勘察相对较细,而路基方面的勘察则往往较粗略。
  目前的山区公路工程勘察还存在许多有待改进的地方。由于现在很多项目的勘察设计工期都非常紧张,如何在很短的时间内达到尽可能高的勘察精度,的确是一个难题。为抢时间,现在地质勘察工作很大一部分外委出去,全线人员设备上了很多,但在施工中仍会暴露出很多地质问题。这一方面是由于地质现象的隐蔽性和地质科学的复杂性,难以全面深入地认识地质现象,另一方面也是由于从事岩土工程的技术人员本身能力有限所致。岩土工程在一定程度上属于经验学科,技术人员的经验非常重要。外委的勘察单位一定要过硬,对于其提供的地质资料要进行审核,去伪存真,对于不能够满足规范和设计要求的坚决返工。在其外业和内业阶段要进行监督,多沟通。外行业的地勘队伍往往对公路工程的特点及公路勘察规范了解不够,不能够有针对性的进行勘察,资料经常不能满足设计要求。另外由于工期紧,技术准备不足,勘察手段不合理,经常导致勘察深度不足,如隧道勘探未采用双管单动钻进,无法判断RQD,钻探工艺和技术不过硬,岩石取心率低,钻孔水文地质试验数据不足,对边坡勘察无法判断滑动面,无法取得可信的各种力学参数,物探手段与其他勘探手段的互相校核精度不够等,甚至有个别单位编造资料应付设计。所以不仅要看投入了?
  5.3运营阶段地质工作目前还基本上是空白,无法保证山区高速公路的安全顺畅。
  6、正确认识地质工作的重要性和特殊性
  由于岩土体的组成物质差异,更重要的是在岩土体内部分布有大量的不连续界面,把完整的岩土体分割成许多块体,总体为非均质体,在应力的传递上非常复杂,因此岩土工程属于非线性科学。现有的岩石力学、土力学、岩体力学等均难以准确的描述岩土体实际的力学本构关系。地质灾害的发生除了其本身的因素外,还受到许多外界的因素影响,十分复杂。因此,对于岩土工程的分析计算只能是半定量的,在很大程度上受分析者经验的制约。对于已经存在的滑坡、崩塌、泥石流等地质病害,其周界相对清楚,各种勘察设计技术规范较完备,认识起来相对容易。最难的是对于现状稳定的高边坡,预测其人工开挖后的稳定性。对于其地质构造的分析,地质-力学模型的建立,稳定计算分析都十分困难。勘察深度难以保证,稳定性计算方法不够科学,边坡设计时也有其不合理之处,如一般都只给出最终的边坡坡率和边界,各种边坡加固设计也是针对最终边坡的,各种分析计算也是以最终边坡为约束条件的。这样即使地质条件清楚,分析计算合理,设计稳妥,施工严格遵循规范和设计要求,也往往会出现难以预料的地质病害。其中一个重要原因是未对开挖过程中的各种边坡条件进行分析计算,虽然按最终边坡条件计算是稳定的,但不能够保证任意开挖条件下边坡都是稳定的。因此对于从事边坡设计的岩土工程师而言,应该对于边坡开挖过程中的多种控制性断面稳定性进行计算,提供合理的开挖步骤和各种稳定的开挖断面,并对不稳定的中间边坡提出临时性的工程加固措施,以保证边坡的稳定开挖。
  7、展望
  技术进步是山区高速公路成功修筑的重要保证。现在采用三维数模,可以很快的得出路线平纵面模型,任意切割纵横断面,发现问题之后可以很快的调整线位并重新进行分析,大大提高了工作效率。相信随着3S技术的发展,今后三维数模会和三维地学模型、岩土工程专家分析系统结合起来,对于重要工点通过现场地质工作,建立地质-力学模型,通过专家分析系统,可以任意模拟边坡开挖后的形状及物理力学状态的变化,迅速分析其稳定性,进行针对性的设计。甚至还可以对边坡等地质病害通过互联网进行远程会诊,聚集各方面力量以解决问题。
  8、结语
  地质环境保护和地质灾害防治是山区高速公路建设成败的关键,为此必须重视地质工作。
  (1)业主要认识到,前期的地质工作一定要认真细致,勘察设计阶段多花些钱和时间,尽量详细地查明地质条件,避免地质隐患,对于施工来说会节约大量的投资和工期。
  (2)设计阶段的地质勘察工作必须加强,要达到必要的深度。
  (3)施工单位要加强地质技术力量,业主单位也要增加地质技术人员,岩土工程监理工作要加强。
  (4)运营阶段的岩土工程监测工作必须重视。
  (5)单纯依靠前期地质工作对地质客观规律和地质环境的认识是不够的,在设计施工运营的全过程中要不断的加强地质工作。
  (6)由于地质条件的复杂性,虽然进行了前期地质勘察工作,在施工和运营中出现地质病害也是正常的。
  (7)设计阶段深入细致的地质工作可以确保施工时不出现大的地质病害,施工阶段的细致的地质工作可以确保运营期间不出现大的地质病害。
  (8)公路勘察设计、施工、建设及运营管理单位一般岩土工程技术力量相对薄弱,应加强人才培养,适应山区高等级公路建设的需要。
  山区高速公路的修建对勘察、设计、施工、监理、管理等各个环节和部门都提出了更高的要求,大家要加强学习,真正重视问题的严重性。可以说,山区高速公路的修建,岩土工程是关键,地质病害是控制性因素。
公路边坡常见支护方法
目前,我国山区高速公路建设迅猛发展。在高等级公路的修建中,出现大量的深挖路堑与高填路堤边坡,其防护问题非常突出。为了满足安全可靠和经济合理双重目标,对高边坡病害特征的深入分析和对其治理工程方案的慎重选择显得十分重要。
  公路边坡沿公路分布的范围广,对自然环境的破坏范围大,如果在防护的同时,能够注意保护环境和创造环境,采用适当的绿化防护方法来进行,则会使公路具有安全、舒适、美观、与环境相协调等特点,也将会产生可观的经济效益、社会效益和生态效益。
  边坡设计应遵循“安全绿色、水土保持、恢复自然、环保之路”的设计原则。
  对公路边坡进行防护,必须考虑以下问题:
  ①边坡稳定:保护路基边坡表面免受雨水冲刷,减缓温差与温度变化的影响,防止和延缓软岩土表面的风化、破碎、剥蚀演变过程,从而保护路基的整体稳定性。
  ②环境保护:使工程对环境的扰乱程度减少到最小,并谋求人工构造物与自然环境相协调。
  ③综合效应:综合防光,防眩,防烟,诱导司机视线,改善景观等目的进行边坡绿化防护,充分发挥防护工程的综合效益。
  1、工程防护
  1.1 抹面与捶面[1]
  1.1.1适用条件:
  ①对各种易于风化的软岩层(如泥质砂岩、页岩、千枚岩、泥质板岩等)边坡,当岩层风化不甚严重时;
  ②所防护的边坡,本身必须是稳定的,但其坡面形状、陡度及平顺性不受限制;
  ③所防护的边坡,必须是干燥、无地下水的岩质边坡。
  1.1.2构造要求:
  ①抹面厚度一般为5~7cm,捶面厚度为10~15cm,一般为等厚截面。
  ②抹面与捶面工程的周边与未防护坡面衔接处,应严格封闭。如在其边坡顶部做截水沟,沟底与沟边也要做抹面或捶面防护。
  ③大面积抹面或捶面时,每隔5~10m应设伸缩缝。
  1.2 灌浆与勾缝[1]
  灌浆适用于石质坚硬、不易风化、岩层内部节理发育,但裂缝宽度较小的岩质路堑边坡。
  勾缝适用于石质较坚硬、不易风化、张开节理不甚发育,且节理缝较大较深的岩石路堑边坡上。
  1.3水泥土护坡
  1.3.1适用条件:
  ①适用于粉土、粉砂、粉质粘土、粘土等填方边坡。
  ②易受洪水浸淹的路基填方边坡。
  ③可用于盐渍土地区。
  1.3.2构造要求:水泥土护坡厚度一般为10~20cm.水泥掺量一般为8%~15%,具体掺量施工时根据现场试验确定。
  1.4 护面墙[1]
  1.4.1适用条件:
  ①多用于易风化的云母岩、绿泥片岩、千枚岩及其它风化严重的软质岩层和较破碎的岩石地段,以防止继续风化;
  ②所防护的边坡本身必须是稳固的;
  ③护面墙有实体护面墙、孔窗式护面墙、拱式护面墙和肋式护面墙。实体护面墙适用于一般土质及碎石边坡;空窗式护面墙用于边坡缓于1:0.75,孔窗内可采用捶面(坡面干燥时)或干砌片石;拱式护面墙用于边坡下部岩层较完整,而需要防护上部边坡者或通过个别软弱地段时,边坡岩层较完整且坡度较陡时采用肋式护面墙。
  1.4.2构造要求:
  (1)实体护面墙
  ①厚度视墙高而定,一般采用0.4~0.6m,底宽一般等于顶宽加H/10~H/20;单级护墙的高度一般不超过15m,多级护墙的总高度一般不超过30m.
  ②沿墙身长度每隔10m设置一道2cm的伸缩缝,缝内用沥青麻筋填塞。在泄水孔后用碎石和砂做成反滤层,以排除墙后排水。
  ③修筑护面墙前,对所有的边坡清除风化层至新鲜岩层,对风化迅速的岩质(如云母岩、绿泥片岩等)边坡,清挖出新鲜岩面后,应立即修筑护面墙。
  ④顶部应用原土夯填,以免水流冲刷。
  (2)孔窗式护面墙
  孔窗式护面墙的窗孔通常为半圆拱形,高2.5~3.5m,宽2~3m,半径1~1.5m.其基础、厚度、伸缩缝等与实体护面墙相同,窗孔内视具体情况,采用干砌片石、植草或捶面。
  (3)拱式护面墙
  拱跨较小时(2~3m),拱圈可采用10#水泥砂浆砌片石,拱高视边坡下面完整岩层高度而定,拱跨较大时,可采用砼拱圈。
  1.5 喷浆或喷射混凝土防护[1]
  1.5.1适用条件:
  ①适用于岩性较差、强度较底、易风化或坚硬岩层风化破碎、节理发育、其表层风化剥落的岩质边坡;
  ②当岩质边坡因风化剥落和节理切割而导致大面积碎落,以及局部小型坍塌、落石时,可采用局部加固处理后,进行大面积喷浆(喷射混凝土)。
  ③对于上部岩层风化破碎下部岩层坚硬完整的高大路堑边坡;
  ④不能承受山体压力,边坡须是稳定的。
  1.5.2构造要求:
  ①喷浆厚度不宜小于1.5~2cm,喷射混凝土的厚度以3~5cm为宜。
  ②为防止坡面水的冲刷,沿喷浆(喷射混凝土)坡面顶缘外侧设置一条小型截水沟。
  ③浆体两侧凿槽嵌入岩层内。
  1.6 喷锚防护[2]
  1.6.1适用条件:
  凡易于喷浆(喷射混凝土)防护的岩质边坡,当岩层风化破碎严重、节理发育,在破碎岩层较厚的情况下,如果继续风化,将导致坠石或小型崩塌,从而影响整个边坡的稳定性。它具有较高的强度,较好的抗裂性能,能使坡面内一定深度内的破碎岩层得以加强,并能承受少量的破碎体所产生的侧压力。
  1.6.2构造要求:
  ①为防止坡面水的冲刷,沿喷浆(喷射混凝土)坡面顶缘外侧设置一条小型截水沟。
  ②锚固深度视边坡岩层的破碎程度及破碎层的厚度而定,用1:3的水泥沙浆固结。
  ③喷浆厚度不小于3cm,喷射混凝土的厚度不小于5cm.
  ④锚杆的类型有树脂锚杆、全长砂浆锚杆、塑料锚杆、水泥锚杆和缝管锚杆。
  ⑤提高锚杆承载力的措施主要有延长锚固段长度、二次压浆、采用端头扩大或多段扩大头锚杆、重复高压灌浆和改变锚杆传力特征的剪力或压力型锚杆。其中二次压浆和重复高压灌浆比较实用有效。
  1.7 土钉墙[3]
  土钉墙是一种较新式的结构物,它主要由“钉”(即锚杆)、混凝土面板(挂网喷射混凝土)、锚板组成。
  1.7.1作用机理
  通过规则排列的锚杆(“钉”)、面板、锚板将边坡一定范围内的土体进行原位加固,形成一种复合结构式的墙——土钉墙,墙后土压力由土钉墙承担。
  1.7.2适用条件
  主要适用于风化破碎较严重的岩石边坡,也可用于粉土、砾石和砂土边坡。承受土压力一般,其最大优点是从上往下逐层开挖土石方并及时对边坡进行封闭加固,能有效减少边坡因开挖临空而带来的英里释放,使边坡保持原来的稳定结构,避免坍塌。
  1.7.3构造要求:
  ①施工程序为:成孔-清孔-置筋-注浆-喷射第一层细石混凝土-装挂钢丝网-喷射第二层细石混凝土;
  ②第一层细石混凝土厚7~10cm,第二层细石混凝土厚8cm.
  1.8 预应力锚索梁[4]
  预应力锚索梁是最近几年发展起来的一种新型加固措施。结构分为锚索和锚梁两部分。
  1.8.1作用机理
  把破碎松散岩层组合连接成整体,并锚固在地层深部稳固的岩体上,通过施加预应力,使锚索长度范围内的软弱岩体(层)挤压密实,提高岩层层面间的正压力和摩阻力,阻止开裂松散岩体位移,从而达到加固边坡的目的。这种方法的最大特点是:可保持既有坡面状态下深入坡体内部进行大范围加固;预先主动对边坡松散岩层施加正压力,起到挤密锁固作用;同时,锚索孔高压注浆,浆液充填裂隙和孔隙,又可提高破碎岩体的强度和整体性;结构简单、工期短、造价低廉。
  1.8.2适用条件
  裂隙和断层发育、防缓边坡工作量巨大的高陡边坡。
  3.构造要求:
  ①锚梁:锚梁为钢筋混凝土梁,采用C30混凝土浇注,它不仅为预应力锚索提供反力装置,而且也对边坡岩土有着框箍和压紧作用。
  ②锚梁的施工顺序为:防线挖槽—绑扎钢筋—支模—浇注混凝土。
  ③锚梁与锚索交叉部位预留塑料套管,便于锚索从中间穿过;在锚头部位预埋承压钢板,并与锚梁浇注成整体。
  ④预应力锚索施工程序为:放点钻孔—编制钢绞线—注浆—张拉锁定。
  ⑤可与喷射混凝土或框格护坡相结合。
  2、植物防护
  2.1 种草
  2.1.1适用条件
  边坡稳定、坡面冲刷轻微的路堤或路堑边坡,一般要求边坡坡度不陡于1:1,边坡坡面水径流速度不超过0.6m/s,长期浸水边坡不适用。
  2.1.2种植方式
  根据施工方法不同,有以下几种方式:
  (1)种子撒播法:适用于边坡土质较软,厚度在25mm以下的沙性土,23mm以下的粘性土,以及边坡缓于1:1的情况。
  (2)喷播法:适用于砾间有砂的砾质土,或厚度在25mm以下的砂质土,厚度在23mm以下的粘性土、亚粘土土坡,或当厚度在25mm以上的硬质土时,在常降暴雨地区,则与铺席工程并用。
  (3)客土喷播法[5]:客土喷播技术是一种改善边坡植生环境,促进植物生长,从而在普通条件下无法绿化或绿化效果差的边坡上实现立体绿化、恢复自然植被的新技术。客土喷播法具有广泛的适应性,土质或岩质边坡都适用。
  (4)点穴、挖沟法
  方法:点穴法是在边坡上用钻具挖掘直径5~8cm、深10~15cm的洞,每平方米约8~12个,将固体肥料等防入,用土、砂等将洞埋住后,再种种子。挖沟法是在边坡大致按水平间隔50cm左右,挖掘10~15cm深的沟,放入肥料后,撒播种子。
  适用于:公路两侧的绿化用地立地条件较差的情况,如硬质土或花岗岩风化砂土挖方边坡。
  2.2 铺草皮
  2.2.1适用条件
  各种土质边坡,特别是坡面冲刷比较严重、边坡较陡(可达60°),径流速度达0.6m/s时。
  2.2.2铺草皮的方式
  平铺、水平叠铺、垂直坡面或与坡面成一半破脚的倾斜叠置,以及采用片石等铺砌成方格或拱形边框、方格内铺草皮等。
  2.3 植树
  适用于:各种土质边坡和风化极严重的岩石边坡,边坡坡度不陡于1:1.5,在路基边坡和漫水河滩上种植植物,对于加固路基与防护河岸收到良好的效果。可以降低水流速,种在河滩上可促使泥沙淤积,防止水流直接冲刷路堤。植树最好与植草相结合。高等级公路边坡上严禁种乔木。
  3、柔性支护
  3.1 三维植被网[6]
  三维植被网又称防侵蚀网,以热塑树脂为原料。结构分为上下两层,上层为一个经双面拉伸的高模量基础层,强度足以防止植被网的变形,并能有效防止水土流失,下层是一层弹性的、规则的、凹凸不平的网包组成。
  3.1.1作用机理:
  三维植被网是由多层塑料凹凸网和高强度平网复合而成的立体网结构。面层外观凹凸不平。材质疏松柔韧,留有90%以上的空间可填充土壤及沙粒,将草籽及表层土壤牢牢护在立体网中间。
  3.1.2特点
  ① 固土效果极好。实验证明:在草皮形成之前,当坡度为45度时,三维植被网的固土阻滞率高达97.5%.即使坡面角达到90°时,三维植被网仍可保留阻滞住60%的土壤。
  ② 抗冲刷能力强。三维网垫及植物根系可起到浅层加筋的作用,这种复合体系具有及强的抗冲刷能力,能够达到有效防护边坡的目的。
  ③ 网垫原材料采用聚乙烯,无毒且化学性质稳定可靠,埋在地下寿命可达50年以上,即使暴露在阳光下寿命也长达10多年。
  ④ 草种采用混合草种,生长成坪快;抗逆性强、耐贫瘠、耐粗放式管理等。
  3.1.3适用条件
  设计稳定的土质和岩质边坡,特别是土质贫瘠的边坡和土石混填的边坡可以起到固土防冲并改善植草质量的良好效果。
  3.2 钢绳网主动防护[9]
  通过锚杆和支撑绳以固定方式将钢绳网盖在坡面上。
  作用机理为通过固定在锚杆或支撑绳上并施以一定预张拉的钢绳网,以及在用作风化剥落、溜塌或坍落防护中抑制细小颗粒、洒落或土体流失时铺以金属网或土工格栅,对整个边坡形成连续支撑。其预张拉作业使系统紧贴坡面形成了局部岩坡或土体移动或发生细小位移后将其裹缚于原位附近的预应力,从而实现其主动防护的功能。其系统作用原理类似喷锚支护等层面防护体系。然其柔性特征能使系统将局部体中下滑力向四周均匀传递以充分发挥整个系统的防护能力,从而使系统能承受较大的下滑力,同时它与三维植被网一样与植物配套实现植物防护,使植物根系的固土作用与坡面防护系统结为一体,实现最佳边坡防护和环保。
  3.3钢绳网被动防护
  该方法是一种能拦截和堆存落石的柔性拦石网,由钢绳网、固定系统、减压环和钢柱四部分组成。
  3.3.1.适用条件
  岩体交互发育、坡面整体性差,有岩崩可能的高路堑边坡。
  3.3.2作用机理
  当落石冲击拦石网时,其冲击力通过网的柔性得以首先消散,并将剩余荷载从冲击点向绳网系统周边逐级加载,最终传到锚固基岩和地层,且由锚杆及其基础承受的最终剩余荷载以达很小的程度。
  4、综合防护
  4.1岩质边坡绿化喷播技术[8]
  绿化喷播技术,其核心是在岩质坡面营造一个既能让植物生长发育而种植基质又不被冲刷的多孔稳定结构。它利用特制喷混机械将土壤、肥料、有机质、保水材料、植物种子、水泥等混合干料加水后喷射到岩面上,由于水泥的粘结作用,上述混合物可在岩石表面形成一层具有连续空隙的硬化体。一定程度的硬化使种植免遭冲蚀,而空隙内填有种子、土壤、保水材料等,空隙既是种植基质的填充空间,又是植物根系的生长空间。
  4.1.1适用条件
  不仅适用于所有开挖后的岩体边坡,而且对于岩堆、软岩、碎裂岩、散体岩、极酸性土岩以及挡土墙、护面墙、混凝土结构边坡等不宜绿化的恶劣环境。
  4.1.2施工方法
  ①修整边坡
  在高速公路边坡支护工程中,坡面比较平整,一般只需清除表面杂物即可。如有非常凹凸的地方须进行处理。
  ②锚杆、挂网
  先在坡面上打孔,然后将机编网开卷铺挂在坡面上,再用锚杆或锚钉固定。对于坡度较小(>1:1)、岩体结构稳定的边坡,或已做拱架的陡坡,可不挂网,面向岩面直接喷射混合好的材料。
  ③喷混
  材料按比例混合后利用特制喷混机械将混合物加水及PH缓冲剂后喷射到岩面上。喷射分两次进行,首先喷射不含种子的混合料,喷射厚度7~8cm,紧接着第二次喷射含有种子的混合料,喷射厚度2~3cm.喷射混合材料平均厚度10cm,变幅为3~15cm.
  ④覆盖
  可在喷射后覆盖无纺布、草帘、遮荫网、稻草等保湿及防止雨水冲刷。
  ⑤养护
  喷播后如未下雨则需每天浇水保持土壤湿润。一般7天左右发芽,一个月成坪,两个月覆盖率达90%以上,成坪后可逐渐减少浇水次数。
  4.2框格护坡
  4.2.1适用条件:
  风化较严重的岩质边坡和坡面稳定的较高土质边坡。
  4.2.2框格形式选择
  框格护坡可选用菱形框格、六边形框格、主从式框格等
  3.构造要求:
  ①框格内植草,通常采用借土喷播法或植草皮等方法。
  ②框格形式主要有正方形、菱形、拱形、主肋加斜向横肋或波浪形横肋以及几种几何图形组合等形式,框格及横肋宽0.4~0.6m,主肋宽一般1m左右,框格间距2.5~3.5m.
  ③应根据情况设置固定桩或锚固筋固定。

预应力锚索桩板墙在高等级公路中的应用
1、工程概况  
    个旧~冷墩二级公路K22+336~K22+520段预应力锚索桩板墙工程位于个旧市保和乡政府驻地以北沟谷地带。该路段地形横坡陡峻,坡脚局部形成陡壁。先后组织有关的专家和工程技术人员对该段工程进行了多次现场勘察,先后提出了调整平面线形、采用桥梁跨越等多种方案比选,但均因地形、地质及工程造价高、施工工期长等因素,无法实施。最后在详细研究工程地质状况和认真分析勘察资料的基础上,本着“技术可行、经济合理”和“一次处治、不留后患”的原则,提出了预应力锚索桩板墙支挡、锚杆框格梁防护等综合处治措施。
    2、工程地质水文条件  
    2.1地形、地貌  
    K22+336~K22+520段位于深切河谷谷坡坡脚地带,与河床高差20~55米,路线纵向与斜坡走向一致。该段地形横坡十分陡峻,K22+336~K22+375段地形横坡50~55度,路中线右侧10~25米为70~80度陡坎,陡坎高度15~20米。坡脚处于河流凹岸侧向冲刷地段。K22+375~K22+430段地形横坡60~70度,路中线右侧3~8米为60~80度陡坡,因坡脚处于河流凹岸侧向冲刷而形成2~6米高的陡壁。K22+430~K22+520段地形横坡45~55度,右侧坡脚局部形成陡壁。
    2.2地层岩性  
    K22+336~K22+520段处于河谷谷坡坡脚地带,根据钻孔揭露,该段覆盖层主要为坡洪积碎石土、亚粘土(粉质粘土)及下伏板岩、灰岩等,表层为0~2.5米最近堆积的碎石土和粘土。
    2.3水文地质  
    该段路线位于普洒河下游区,主要穿越中三迭统法郎组泥灰岩、页岩、板岩,分布区节理裂隙发育,此类地层降水入渗系数较高,地表迳流系数一般可达0.3~0.5以内。具有纵坡比降大,水流速度快携砂能力强,对岸坡冲刷剧烈等特点。  
    2.4地震烈度  
    该段路线所经区域的地震烈度从国家地震局和建设部1992年颁布实施的《中国地震烈度区划图》中查得,该地区地震烈度为Ⅶ度区。  
    3、边坡稳定性分析  
    3.1设计原则  
    由于该段路基地面横坡陡峻,常规的挡墙和边坡设计无法解决,若采用桥梁通过,工程造价高,施工工期长。本着节约工程投资,缩短施工工期,减少工程隐患,增加工程安全性等方面因素,设计中采用预应力锚索桩板墙的设计形式:墙后的侧向土压力作用于挡土板,并通过挡土板传递给肋柱,再由肋柱传递给预应力锚索,由预应力锚索与周围地层的锚固力形成平衡。  
    3.2理论分析  
    依据土体极限平衡原理,采用单元分析法,考察此单元体在其自身条件下保持稳定所需的条件。具体做法是在该坡体上任意取一长、宽、高均为1米的土块,假定取消周围约束。根据土体物理性能指标取值为:C=10Kpa,Φ=30.5°,r=17KN/m3。地质模型如右:  
    由极限平衡理论:m=抗滑力/下滑力=(CL+Wcosθtgφ)/Wsinθ
    令m=1 → θ=60.8°  
    因此,从理论上讲,当坡角为60.8°时,土体处于临界平衡状态,坡角大于60.8°时,土体处于不稳定状态。根据地质资料,除上坡体K22+484.05段坡角为80.5°,下坡体K22+394.95段坡角为68°,其余断面坡角均小于60.8°,即上、下坡体从理论上说是基本稳定的。
    3.3综合处治方案
    3.3.1 肋柱  
    ⑴ 布置原则  
    根据实际地形和地质水文状况揭示,地层经受了强烈的挤压,岩体产状变化大,层理、节理发育,岩体间粘结力低,为防止岩体产生层间滑动,对此坡体采用预应力锚索加承载墩先对不稳坡体进行防护,再用预应力筋对填土及动载引起的土体侧压力进行肋柱的加固。该段路基采用上、下两排肋柱错开布置的形式进行设计,上、下排肋柱之间采用30厘米的浆砌片石进行封闭。上排肋柱共计42根,总长1087.20米,其中第14号肋柱高度为23.08米,埋深14.59米;下排肋柱共计43根,总长1264.92米,其中第16号肋柱高度为21.05米,埋深19.10米。上、下排肋柱根据高度和地质状况分别采用1.0×1.5米、1.5×2.0米矩形断面并带企口,以便安装预制挡土板,肋柱间距为4米,根据高度不同分为六种形式(见下表所示),其埋深则按地质资料具体确定。
    肋柱尺寸表  
    编号 肋柱形式 截面尺寸 肋柱高度 锚点个数  
      1 A型肋柱 1.0×1.5米H≥4米  
      2 B型肋柱 1.0×1.5米 4<H≤8米1  
      3 C型肋柱 1.0×1.5米 8<H≤12米2  
      4 D型肋柱 1.5×2.0米 12<H≤16米3  
      5 E型肋柱 1.5×2.0米 16<H≤20米4  
      6 F型肋柱 1.5×2.0米 20<H≤24米5  
    ⑵ 计算分析
    墙背土压力按库仑土压力计算,结构计算根据肋柱的埋深和工程地质水文状况,肋柱按一端固结或铰支,另一端自由的超静定连续梁进行计算,根据计算确定的内力,按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)对肋柱和挡土板进行配筋,确定预应力锚索钢绞线的根数和预应力张拉吨位。现将F型肋柱的计算如下:  
    ① 将车辆荷载置换为等代土柱高,按库仑土压力计算墙背土压力;
    ② 用力矩分配法,解得个点弯矩和剪力;
    ③ 根据计算得到的内力,对肋柱进行配筋;
    ④ 根据计算得到的内力,确定预应力锚索钢绞线的根数和预应力张拉吨位。
    3.3.2挡土板
    ⑴ 布置原则  
    挡土板根据实际地形分别采用尺寸为0.5×0.3×2.3米挡土板和0.5×0.25×2.8米挡土板两种类型。
    ⑵ 计算分析  
    挡土板按以肋柱为支座的简支梁进行验算,其计算跨径lp为挡土板两支座中心的距离,荷载取挡土板所在位置土压力的平均值,即q=(σ′+σ″)*h/2。  
    得挡土板跨中最大弯矩Mmax=qlp2/8;支座处剪力Q=qlp/2  
    根据挡土板的内力进行配筋计算。  
    3.3.3预应力锚索  
    ⑴ 布置原则
    锚索按压力分散型锚索进行设计,每根锚索均向下与水平夹角为15°,锚索间距为4米,按肋柱高度,分别确定锚索钢绞线的根数和预应力张拉力。预应力钢绞线采用一端张拉的方式进行张拉。锚索钢绞线材料应选用高强度、低松弛环氧喷涂无粘结预应力钢绞线,(ASTMA416-88a标准270级,Rby=1860Kpa,松弛率为3.5%,Φj=15.24mm),共计设置锚索231根,其中上排桩设置101根;下排桩设置130根。
    ⑵ 计算分析
    ① 计算假定:假定锚固段传递给岩体的应力沿锚固段全长均匀分布;假定钻孔直径和锚固段注浆体直径相同(即注浆时地层无被压缩现象);假定岩石与注浆体界面产生剪切破坏。  
    ② 计算锚固段长度:锚索的锚固段长度按公式:  
    L=(SfNt)/(πDqr) 和L=(SfNt)/(nπdξqr)  
    分别计算,取最大值。  
    ⑶ 抗拉拔试验  
    为取得现场资料与数据,确定土体的极限承载力,以及为设计提供合理的参数,在2001年7月至9月在工地现场进行肋锚索抗拉拔试验。试验锚索共6束。分别为750KN、1200KN、1600KN级锚索各2束。试验结果见下表
编号 地层情况 钻孔直径 锚固长度 设计应力 试验荷载 最大检验荷载钢绞线理论伸长值最大检验荷载钢绞线实际伸长值  mm m KN KN mm mm  
1 前12.2米为碎石土,后为板岩 前12.2米为168,后为15024 1600 2288 60 65  
2 前13.3米为碎石土,后为板岩152 18 1200 1664 71 72.5  
3 前10.7米为碎石土,后为板岩 前8.4米为168,后为15012 750 1040 71 69  
4 碎石土 153 24 16002288 60 64  
5 前13米为碎石土,后为板岩151 12 750 1040 71 73  
6 前16米为碎石土,后为板岩152 18 1200 1920 71 70
    注:①试验中6号锚索超规范拉至0.923Afptk,未见破坏,其余锚索都按规范拉至0.8Afptk,未见破坏;②表中钢绞线伸长量系指基准钢绞线长度反映到大千斤顶上的值。
    3.3.4 其他处治措施  
    ⑴ 由于场区分布的碎石土、亚粘土(粉质粘土)抗剪性能较差,加之位于高角度边坡之上,边坡稳定性差,对段落进行削坡和在河岸边设置挡墙,挡墙高度均大于最大洪峰线位。  
    ⑵ 根据自然坡体的特点,上坡体采用锚杆框格梁进行防护,地梁之间暴露部分为防止坡面风化、剥蚀,采用种草进行处理。  
    ⑶ 为排除地下水,提高岩土的抗剪强度,对于富水的高边坡,在坡脚及回填土处,设置仰斜排水孔,孔间距5~7m,孔径Φ100,仰斜5~10°,并采用特殊的透水型排水软管。  
    ⑷ 对于工程地质条件较差,有倾向于临空面的不利结构面的高边坡,其坡脚应力集中,有滑塌可能,根据推力计算,在各级设置支挡工程,工程措施既要满足坡体的整体稳定,又要满足局部稳定的要求,同时要保证施工过程中的临时稳定。  
    4.1 施工工艺要求  
    4.1.1肋柱及护壁  
    ⑴ 采用挖孔灌注桩结合护壁施工,挖掘及支撑护壁两个工序应连续作业,护壁每1米为一节,锁口与护壁,护壁与护壁间上、下节带弯钩的纵向钢筋搭接绑扎。施工期间应认真观测井壁变形,在岩质松软或可能滑动的层面应加密钢筋,并适当加厚护壁。
    ⑵终孔并清理孔底后,吊入钢筋笼,应将其调正,准确就位;地面以上的主筋应预留一定的焊接长度接头间隔错开,在同一断面内接头钢筋面积不应超过钢筋总面积的50%。终孔后清孔后必须干净,孔底沉淀土层厚度应满足施工规范要求。  
    ⑶ 肋柱柱身混凝土应连续浇注,不留施工缝,如必须间歇而又超过下层混凝土凝结时间时,应停止浇注,以施工缝处理。柱身较高时可采取分段浇筑的方式,分段位置不得低于锚索标高以上1.0米,柱身连接处必须焊接主筋时,焊接长度不得小于30cm。所有钢筋的加工、安装和质量验收等均应按照施工规范的有关规定进行。  
    ⑷ 在肋柱的施工全过程中必须对肋柱进行位移监测,加强预警预报工作,保证施工安全。  
    ⑸ 肋柱施工应隔桩进行。  
    4.1.2 挡土板  
    ⑴ 挡土板为预制钢筋混凝土矩形板,预制时于板两端1/4板长处预留吊装孔,同时作为泄水孔,孔内壁涂抹沥青,预制场设置的规模和配备应结合实际情况而定。  
    ⑵ 挡土板宜平面堆放,其堆积高度不宜超过5块,板块间宜用木材支垫,并应置于设计支点位置,运输过程中应轻搬轻放。  
    ⑶ 挡土板安装时,应竖向起吊,二头挂有绳索,以手牵引,对准柱两侧划好的放样线,将挡土板正确就位,应防止与柱相撞,必要时,在两侧和中间设斜模支承,确保挡土板的稳定。   
    ⑷ 挡土板采取直接搭接柱身的形式,柱、板连接处的间隙用沥青麻絮填塞。挡土板之间的上下安装缝宜小于10mm,较大时可用砂浆填塞或沥青软木板衬垫。要求板面平整,外形轮廓清晰,线条顺直,各部尺寸应符合要求。  
    ⑸ 安装挡土板时应做好防排水设施及填筑墙背填料;当土板顶面不齐时,可用砂浆或现浇小石子混凝土作顶面调整层;对于土质松软,地表水丰富地段,挡土板应老虑埋入原地面下1.0米左右。  
    4.1.2预应力锚索  
    ⑴ 根据锚索的设计图纸,按设计要求,将锚孔位置准确测放在坡面上,孔位误差不得超过±5cm。  
    ⑵ 钻孔  
    ① 锚索钻孔要求干钻,禁止开水钻,以确保锚索施工不致于恶化边坡岩体的工程地质条件和保证孔壁的粘结性能。为清除钻孔及孔壁上附着的粉尘、泥屑,钻孔完成后必须使用高压空气(风压0.2~0.4Mpa)将孔中岩粉及水全部清除出孔外,以免降低水泥砂浆与孔壁岩体的粘结强度,保证孔内干燥和孔壁的干净粗糙;钻孔完成并清洗干净后,应对孔口进行暂时封堵,不得使碎屑、杂物进入孔口。
    ② 锚孔下倾与水平夹角为15°,允许误差±1°,为确保锚孔深度,实际钻孔深度不小于设计长度且不大于设计长度的1%,当有不可排出的松散物时,应考虑松散物所占据孔的深度。
    ③ 钻进过程中应对每个孔的地层变化,钻进状态(钻压、钻速),地下水及一些特殊情况作现场记录,如遇地层松散,破碎时,应采用跟套管钻进技术,以使钻孔完整不坍。如有地下水从孔口溢出时,应采用固结注浆,以免锚固段注浆体流失或强度降低;如遇坍孔,应立即停钻,进行固壁灌浆处理(灌浆压力0.1~0.2Mpa),待水泥砂浆初凝后,重新扫孔钻进。  
    ④ 钻孔的精度应满足以下要要求:  
    a.钻孔的孔径不小于设计要求;  
    b.锚索钻孔在任何一个方向上的入口误差不得大于2.5°;
    c.钻孔在钻进长度方向上的孔斜偏差不宜大于钻孔长度的1/30;
    d.钻孔水平方向的误差不应大于50mm,垂直方向的误差不应大于100mm。
    ⑤ 此边坡表层岩体破碎,锚孔倾角较小,坡体又很陡峻,建议采用潜孔冲击钻或旋转钻钻进,同时须备带套管。  
    ⑶压水实验:  
    为了保证在锚索注浆时注浆不从孔内的的裂缝中流失,就要对钻孔的渗漏情况进行确定,为此,在第一次成孔后和锚索推送前,应对钻孔进行压水实验。压水实验的水压力一般不大于0.3Mpa。  
    ① 进行压水实验时应按岩层的不同特性划分实验段,实验段长度宜5~10m;  
    ② 实验的起始压力、最大压力和压力级数按需要和现场情况确定;  
    ③ 应在每10分钟的间隔记录一次压入水量,当连续四次读数的最大值或最小值与最终值之差小于最终值的5%时,该值即为该压力下的最终压入水量;
    ④ 压力应由小到大逐级进行,达到最大压力后再由大到小逐级减少到起始压力,并及时绘制压力与压入水量的相关图;
    ⑤ 当测得钻孔在0.1Mpa的压力下10min内平均漏水量超过5L/min时,应对钻孔进行预注浆;待注浆体固化后再进行钻孔并重复压水实验,直到漏水量满足要求为止;
    ⑥ 当有水从钻孔渗出,且在邻近岩体区域内的节理裂隙中可看到渗水时,可不做压水实验而直接进行预注浆。  
    ⑷ 锚索制作  
    ① 锚索制作前应对钻孔实际长度进行测量,并按孔号截取锚索体长度;钢铰线宜使用机械切割,不得用电弧切割,制作好的锚索应按对应孔号进行编号;编束前,要确保每根钢绞线顺直,不扭不叉,排列均匀,对有死弯,机械损伤处应剔出。无粘结绞线外套PE管不得有破损。  
    ② 锚索制作应进行防腐处理,钢铰线全长涂刷带锈防锈剂,采用全长波纹套管防护;  
    ③ 锚索锚固段的隔离支架和束线环应根据现场装配情况而定,一般间距为0.6~1.0m;锚索自由段和锚固段外波纹套管周围设对中支架,间距一般为1.5~2.0m,以保证钢绞线顺直。锚索头部应放有导向帽,以利穿索入孔。
    ⑷ 注浆  
    ① 注浆材料为普通525水泥,中细砂、砂浆强度≥40Mpa。
    ② 采用孔底返浆进行注浆,注浆管应随锚体一同送入孔底,在注浆时边注边拔,使注浆管始终有一段埋于注浆液中,直到注满;当孔中存有积水时,注入的浆液会将积水全部排出,待溢出浆液的稠度与注入浆液的稠度一样后再抽出注浆管,注浆压力≥0.3Mpa。  
    4.1.3张拉、锁定  
    ⑴ 只有当肋柱和注浆体达到预计强度后才能进行锚索张拉,通过给锚索施加预应力,使锚索主动受力,达到设计加固效果。采用小型千斤顶进行单根对称和分级循环张拉,可减少锚索的受力不均匀。张拉作业前必须对张拉机具设备进行标定,张拉机具应与锚具配套。  
    ⑵ 张拉时,加载速率不宜太快,宜控制在设计预应力值的0.1/min左右,达到每一级张拉应力的预定值后,应使张拉设备稳定一定时间,在张拉系统出力值不变时,确信油压表无压力向下漂移后再进行锁定。卸荷速率宜控制在设计预应力值的0.2/min左右。
    ⑶ 锚索超张拉力为锚索设计拉力值的1.05倍,锚索张拉应分次分级进行,按对称张拉原则进行,必须待每根绞线张拉完一级后方可进行下一级的张拉。依次按此进行,直至张拉吨位。每次分级张拉时,除第一级需稳定10~15分钟外,其余每一级需要稳定2~5分钟,并分别记录每一级钢绞线的伸长量。张拉时钢绞线受力要均匀。并做好分级绞线的标记。锚具回缩等原因造成的预应力损失采用超张拉的方法加以克服,超张拉值一般为设计预应力的5%~10%,其程序如下。张拉完成48小时内,若发现预应力损失大于设计预应力的10%时,应进行补偿张拉。
    0 (105%~110%)设计预应力(105%~110%)设计预应力 稳压tmin tmin 最小稳压时间,一般大于2min  
    ⑷在张拉时,应采用张拉系统出力与锚索体伸长值来综合控制锚索应力,当实际伸长值与理论值差别较大时,应暂停张拉,待查明原因并采用相应措施后方可进行张拉;  
    ⑸张拉到位后,即锁定。机械切除多余钢绞线,严禁电割、氧割,并应留≥10cm以防滑脱,最后用C20砼封锚。  
    ⑹根据此边坡工程的特殊性,下坡体的张拉应先对锚固坡体的绞线进行张拉,等到板墙内的填土到一定高度后再对肋柱上的锚索按从下到上的顺序进行张拉、锁定、封锚。  
    4.2工程实施步骤及注意事项  
    预应力锚索桩板墙工程较为复杂,该工程更是如此,故合理确定项目的施工顺序显得尤为重要,为确保施工和运营过程中边坡的稳定,除应采取合理的支挡加固措施外,还必须采用科学有效的施工方法、工艺及程序,避免施工过程中边坡失稳破坏,造成重大损失,甚至于留下后患,影响边坡的长期稳定和运行的安全。  
    ⑴ 充分做好施工前的准备工作,提前修筑、搭建施工临时便道,保证施工队伍进场能顺利开工。  
    ⑵ 施工前应先熟悉设计图纸,认真做好各项工程施工组织计划,充分考虑当地季节性气候对施工工艺的影响,尽量避免安排在雨季施工。  
    ⑶ 施工单位必须现场实测断面,按设计放线,放线以路线中心线及路基标高为准,所有支挡及防护工程,均应按设计型式尺寸挂线放样施工,保证施工质量。  
    ⑷ 下坡体施工的特殊性、坡体上的锚索孔位是根据相应的肋柱位标高沿15°倾角投到相应坡体上,由于是自然坡体没有统一的坡率,设计出的锚孔孔位与实际坡面上的孔位会有偏差,故下坡体锚孔孔位应主要由现场实测定出,这要求测量队伍需有较高的专业水平。
    ⑸ 下坡体的施工应严密组织,充分协调与组织好各施工工序的合理进行,要处理好测孔位、搭设工作架、造孔与浇注肋柱的先后关系,否则会严重影响到后序工作的进行。  
    ⑹ 此坡体上部为坡积碎石土、亚粘土(粉质粘土),其抗冲刷能力低,一遇暴雨极易产生崩塌,一旦崩塌物为较大块石,其巨大的冲击能量势必危及下部构筑物的安全,须引起高度重视,并在施工前进行有效防护处理。  
    ⑺ 清方削坡应采用无声膨胀爆破施工以减少对山体的扰动。  
    5、结束语  
    总之,路基横向陡边坡处治工程的复杂性及边坡工程本身的隐蔽性,勘察设计人员在整个勘察设计过程中应根据水文地质条件,充分认识到潜在的地质危害,既要充分考虑工程的安全性、可靠性及经济性,又要重视施工方法、施工工艺的可行性,尽量做到节约工程投资,缩短施工工期。

浅谈高速公路边坡加固
摘要:本文从高速公路边坡加固技术的现状开始,谈到了高速公路边坡面临的现实条件和边坡病害的原理。在此基础上介绍了几种边坡加固的类型以及其优缺点和适用情况。最后总结加固方法的选取要根据工程特点、施工条件、经济水平来衡量选用。
关键词:边坡加固,挡土墙,抗滑桩,预应力锚索,排水固结
1 前言
目前,高速公路以其特有的优势成为我国重要的交通手段。高速公路因其线形、纵坡等方面的约束需要,高填深挖路基较多,由此产生的各类边坡,如加固和防护措施不得力,极易引发各种边坡病害。如何对开挖后的边坡进行合理的稳定性评价和加固成为高速公路建设中的一个难题。
2 高速公路边坡加固技术现状[1]
边坡可分为自然边坡和人工边坡,边坡工程一般指人工边坡,是一种把自然边坡经人工填筑或开挖形成的工程地质体。边坡工程涉及领域很宽,不同行业的边坡工程各具特色。对单个边坡而言,矿山工程边坡高陡,水利工程边坡需要考虑水位升降、洄水影响以及流水侵蚀等诸多复杂的因素。公路边坡具有自身特点,线长点多,地质条件种类多,情况复杂,安全度要求高。坡高相对较矮,坡度略缓,一般直接开挖于地表,其坡高通常为几米至几十米,百米以上高边坡并不多见。边坡多由残坡积、全风化、强风化、中风化、微风化和未风化等不同岩层构成,工程性质相对复杂,值得重视。
边坡病害的类型主要有滑坡、崩塌、泥石流、错落、流坍、冲刷、剥落等,其中滑坡、崩塌、泥石流被称为是山区公路的三大主要地质病害。
2.1 滑坡
滑坡一般指斜坡(小于30°)或边坡(人工斜坡)上的岩土体在重力作用下沿一定的软弱面向下前方整体滑动的现象。人工填筑物滑坡常常由于坡脚地基软弱,或在雨水长期冲刷下导致填土滑移,这在软基地区以及山区填方都有发生;而最为常见的还属山区的挖方滑坡。一般讲,滑坡按形成原因可分为自然滑坡和工程滑坡;对于地质勘察揭示的滑坡,公路选线一般考虑绕避的原则,受其它条件限制不得不通过时,往往会采取加固措施;而涉及公路的滑坡,可分为施工建设期发生的和公路建成运营后发生的滑坡,施工期滑坡往往是由于人为切割山体,导致山体边坡下部形成临空,在爆破、降雨、冻融等外力因素的不利影响下,边坡岩土属性趋向软化或坡体发生蠕变,从而产生滑坡。
2.2 崩塌
崩塌一般指陡坡(大于30°)或边坡(人工斜坡)上岩土沿残积层中的裂隙和下伏风化较浅的岩层或软弱面瞬间脆性破坏的现象。崩塌病害的发生更具突发性,在公路施工期和运营期均可能产生。如浙江省东部沿海一高速公路通车期间,在台风季节曾发生边坡崩塌事件,导致高速公路临时封闭处理近二个月,相应路段的地方道路车辆负荷猛增,常常发生交通拥挤堵塞现象,对地方经济、物流运输、人们出行造成很大影响。
2.3 泥石流
泥石流是指斜坡上或沟谷中含有大量泥、砂、石的固、液相颗粒流体奔腾冲泻的现象。泥石流是地质不良山区的一种介于洪水和滑坡间的地质灾害。泥石流的发生频度主要由于区域山体地貌植被的破坏以及恶劣气候条件的作用,以往在山区低等级公路上发生较多,高速公路往往采取绕避方案或针对性的重点措施,因此,对高速公路边坡的影响相对较少。
3 影响边坡稳定的因素
影响边坡稳定的因素很多, 总的归纳起来可分为两大类, 即: 自然因素和人为因素[2]。
3.1 自然因素
公路是特殊的带状构造物, 每条公路都要穿越很多地区, 由于受地质构造和地形条件等因素的影响, 每一个小区域都有不同的地质和气候条件, 云南更显得突出。所以, 影响边坡稳定的自然因素包括下列几方面, 即: 地质、地形、气候和水文条件等四个方面。
3.2 人为因素
一条公路的建设和使用管理, 都是由人去实现的, 根据建设程序和内容, 并结合已建公路的情况看, 影响边坡稳定的人为因素可归集为下列三个方面, 即: 设计因素、施工因素和养护管理因素。
4 高速公路边坡加固类型
根据滑坡产生的原理,边坡加固工程的技术途径主要有减少滑坡下滑力或消除下滑因素、增加滑坡阻滑力或增加阻滑因素两种。边坡加固工程须贯彻顺应性与协调性原则,充分利用稳定状态的自然条件,改造那些处于非稳定状念的自然条件,使之处于新的稳念。结合滑坡地形、水文地质条件、滑坡形成机理及发展阶段,因地制宜采用一种或多种措施达到防止滑坡灾害的产生或治理己发生的滑坡灾害的目的。
目前,边坡加固措施可归纳为以下几种类型。
4.1 抗滑墙
抗滑挡土墙是目前整治中小型滑坡应用最为广泛而且较为有效的措施之一。对于小型滑坡, 可直接在滑坡下部或前缘修建抗滑挡土墙; 对于中、大型滑坡, 抗滑挡土墙常与排水工程、刷土减重工程等措施联合运用。其优点是山体破坏少, 稳定滑坡收效快。尤其对于由于斜坡体因前缘崩塌而引起的大规模滑坡,会起到良好的整治效果。抗滑挡土墙所抵抗的是滑坡体的剩余下滑力,较一般挡土墙主要抵抗的主动土压力大。因此,为满足其稳定性要求,将墙面坡度采用1: 0.3~1:0.5,甚至缓至1:1,有时甚至将基底做成倒坡[3]。
4.2 挡土墙防护[4]
在公路路堑边坡防护工程中,大量的挡土结构得到了广泛应用。挡土墙按断面的几何形状及特点,常见的形式有:重力式、锚杆式、土钉墙、悬臂式、扶臂式、柱板式和竖向预应力锚杆式等。各种挡土墙都有其特点及适用范围, 在处理实际挡土工程时,应对可能提供的一系列挡土体系的可行性作出评价,选取合适的挡土结构型式,做到安全、经济、可行。
4.3 抗滑桩
抗滑桩是易滑坡路段防护应用最广泛的方法。其主要工作原理是凭借桩与周围岩(土)体的共同作用,将滑坡体的推力传递到滑动面以下的稳定地层,利用稳定地层的锚固作用和被动抗力来平衡滑坡体的推力。抗滑桩承受的外力,主要是桩后土体的滑坡推力,其次是桩前土体抗力。与其他杆件结构如柱、桩基础等相比。其独特的受力特点是主要承受横向荷载。有些类似于梁,但由于它埋藏在地层中。动面的存在和地基土体抗力的作用,又使其有别于简单的粱。成为一种超静定结构[5]。
抗滑桩施工方法可分为:打人桩、钻(挖)孔灌注桩,其中以挖孔桩最为常用;按材料可分为:木桩、钢桩、混凝土或钢筋混凝土桩等;按截面形式,则有矩形桩、管形桩、圆形桩等。其结构形式也是多样的,如各处独立设置的排式单桩,将各桩上部以承台连接的承台式桩及做成排架形式的排架桩等,也可以根据需要做成其它形式。
抗滑桩的突出优点是:
抗滑能力大,在滑坡推力大、滑动面深的情况下,较其它抗滑工程经挤、有效;桩位灵活,可以设在滑坡体中最有利于抗滑的部位,可以单独使用,也能与其他建筑物配合使用。分排设置时,可将巨大的滑体切割成若干分散的单元体,对滑坡起到分而治之的功效,挖孔抗滑桩可以根据弯矩沿桩长变化合理布设钢筋。因此,较打入的管桩等要经济;施工方便,设备简单。具有工程进度快、施工质量好、比较安全等优点。施工时可间隔开挖。不致引起滑坡条件的恶化;开挖桩孔能校核地质情况,检验和修改原有的设计,使其更符合实际;对整治运营线路上的滑坡和处在缓慢滑动阶段的滑坡特别有利;施工中如发现问题易于补救。
4.4 预应力锚索
预应力锚索作用机理是把破碎松散岩层组合连接成整体,并锚固在地层深部稳固的岩体上,通过施加预应力,把锚索长度范围内的软弱岩体(层) 挤压密实, 提高岩层层面间的正压力和摩阻力,阻止开裂松散岩体位移,从而达到加固边坡的目的。这种方法的最大特点是:可保持既有坡面状态下深入坡体内部进行大范围加固;预先主动对边坡松散岩层施加正压力,起到挤密锁固作用;锚索孔高压注浆,浆液充填裂隙和孔隙,又可提高破碎岩体的强度和整体性;结构简单、工期短、造价低廉。锚杆在边坡加固中通常与其它支挡结构联合使用[3]。
(1)锚杆与钢筋砼桩联合使用,构成钢筋混凝土排桩式锚杆挡墙。
在边坡支护中排桩式锚杆挡墙主要用于下列情况: ①位于滑坡区域的边坡支护、路堑开挖造成牵引式滑坡或工程滑坡可能性较大的潜在滑坡区域的边坡支护, 在抗滑桩难以支挡边坡推力荷载时,宜优先采用预应力锚索抗滑桩结构,②边坡切坡后,由于外倾软弱结构面形成临空状楔体塌滑可能性较大,造成危害性较大的边坡。③高度大于12m,稳定性较差的土层边坡,此时由于抗滑桩悬臂较长,承受的弯矩过大,为了防止抗滑桩破坏,可采用单锚点或多锚点作法。④坡顶0.5m 内有重要建筑物或较大荷载的Ⅲ、Ⅳ类岩石边坡和土层边坡。
(2) 锚杆与混凝土格架联合使用形成钢筋混凝土格架式锚杆挡墙,锚杆锚点设在格架节点上,锚杆可以是预应力锚杆(索) 和非预应力锚杆(索)。这种支挡结构主要用于高陡岩石边坡或直立岩石切坡,以阻止岩石边坡因卸载而失稳。
(3)锚杆与钢筋混凝土面板联合使用形成锚板支护结构, 适用于岩石边坡。锚杆在边坡支护中主要承担岩石压力, 限制边坡侧向位移, 而面板则用于限制岩石单块塌落并保护岩体表面防止风化。
(4)锚钉加固边坡, 在边坡中埋入短而密的抗拉构件与坡体形成复合体系,增强边坡的稳定性。该法主要用于土质边坡和松散的岩石边坡,加固高度较小。
(5)锚杆与钢筋混凝土板肋联合使用形成柱板式锚杆挡墙, 一般采用自上而下的逆作法施工。
4.5 压浆锚柱(固结)
随着注浆技术和相关技术的迅速发展,注浆在边坡加固与防护中应用相当广泛。注浆是通过把浆液注入岩石的裂隙或土体的孔隙中,一方面增强边坡坡体的抗剪强度、减小坡体的渗透性,从而提高其地基承载力、减小水压力或水动力, 另一方面提高可能的潜在滑面的抗剪强度以增强坡体的稳定性。
边坡注浆加固技术一般适用于两种情况:对于由崩滑堆积体、岩溶角砾岩堆积体、以及松动岩体构成的极易滑动的边坡或由于开挖形成的多卸载裂隙边坡, 对坡体注入水泥砂浆,以固结坡体并提高坡体强度,避免不均匀沉降,防止出现滑裂面。对于正处于滑动的边坡、存在潜在滑动面的边坡、或处于不稳定的边坡,运用注浆技术对滑带压力注浆,从而提高滑面抗剪强度,提高其稳定性。这种情况实际上是把注浆加固作为边坡滑带改良的一种技术,滑带改良后,边坡的安全系数评价一般采用抗剪断标准。由上述可知,边坡注浆加固一般适用于以岩石为主的滑坡、崩塌堆积体、岩溶角砾岩堆积体,以及松动岩体边坡。如图6 所示。
压浆锚柱(固结)其施工设备简单、占地面积小、工期短、见效快、加固地层的深度可深可浅, 但难以检测注入范围和判断固结状态。
4.6 排水固结
排水包括地表排水和地下排水,其目的是将地表水截流排泄,并把滑体内地下水引出坡体,以减少滑坡体因水理作用而失稳。研究表明绝大多数滑坡是由于过于集中的水活动(地表水、地下水和大量降水)所引起,故有“十滑九水”之说,所以滑坡体的排水十分必要。
地下排水措施包括在边坡内设置的排水平硐、排水竖井,或在排水平硐和排水竖井内打的排水孔,以及在边坡表面上打的排水孔。地下排水措施可降低坡内的地下水位,减小作用在边坡滑体上的水荷载。该种措施的排水效果取决于不连续面的规模、渗透性能、输水能力和方位。一般来讲,地下排水措施是一种较有效的边坡处理措施之一。表面排水措施包括在坡顶和坡面上修的截水沟。表面排水措施可将坡顶和坡面上的来水集中排泄,减小裂隙水压力对边坡稳定的不利影响。表面排水措施是岩质高边坡加固处理中一种快捷、经济和有效的措施[1]。
4.7 复合支挡结构
复合支挡结构是由锚杆和桩组成的一种新型挡土结构,由作为竖向挡土结构的双排桩和作为外拉系统的侧向倾斜锚杆组成,并通过桩顶横梁沿土体通长布置。其中,两排竖向桩及桩顶横梁形成空间门架式挡土结构体系,具有较大的侧向刚度,可以有效地限制整个结构的侧向变形。作为外拉系统的土层锚杆,其一端通过桩顶横梁与桩相连,另一端为锚固体。锚固体设在稳定土层中,通过锚杆传递到处于稳定区域中的锚固体上,由锚固体将传来的荷载分散到周围稳定的土层中,从而可以充分发挥结构的整体受荷能力和地层的白承能力。挡土结构通过桩顶横梁保证结构的整体性,具有较大的空间效应。
5 结语
边坡稳定性分析及加固理论技术研究由来已久。国内外学者曾从静力学观点和理论出发, 对边坡失稳滑动形成的条件、作用力因素、滑体结构、滑体尺寸方面进行考虑, 对边坡进行勘测, 运用极限平衡法分析计算来评价边坡的稳定性, 并采用适当的加固技术防护边坡, 实践证明是成功的。目前,边坡稳定性分析无论从理论上还是方法上都日趋成熟, 提出了多种评价边坡稳定性的方法, 这些理论技术均不同程度地推进了对边坡稳定性的研究。
在进行加固方法的选择时, 需要正确分析边坡失稳机理, 准确评价其稳定性,合理地进行下滑力的计算, 这是选择加固设计方法的关键。因此, 在进行加固设计时, 首先要结合工程所处的地质环境, 分析边坡可能出现的破坏情况,然后结合工程特点, 提出相应的加固方案, 最后综合考虑施工方法和经济条件选择便于实施的加固方案[6]。

参考文献
[1]毛斌.高速公路边坡加固与防护技术研究.浙江大学建筑工程学院硕士学位论文,2008.
[2]何福道.高速公路边坡防护与加固初探.公路.2001年2月第2期.
[3]朱蓓.高速公路路堑边坡加固防护技术.
[4]陈建娣.高速公路路堑边坡的防护加固技术.科技创新导报,2008.
[5]黄力华.抗滑桩在高速公路边坡加固治理中的应用.科技信息,2008.
[6]刘卫东.浅析高速公路高边坡加固方法.交通标准化,2008年第1期.
[7]吴壮佳.浅析高速公路边坡加固及防护措施.广东科技,2007.
[8]陈增新.高速公路高边坡加固的设计方法.中国科技信息,2008年第13期.
[9] Hoek E. Strength of rock and rock masses. ISRM News Journal,1994.
[10] Han Juran Aomar Benslimane. Slope stabilization by micropile reinforcement. Landslides,1996.
浅谈边坡工程稳定性及处治对策
摘要:目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。
关键词:边坡稳定性分析处治对策
0引言
人们对于路堑边坡稳定性的研究是伴随着铁路和高等级公路建设过程中出现了大量的边坡滑塌事故而开展的,其目的在于通过对边坡稳定性的分析和评价,为实际工程提供合理的边坡结构,以及对具有破坏危险的边坡进行人工处理,避免滑坡出现造成的灾害和损失,因此有必要对边坡稳定性进行分析,并提出相应的处治对策,对相关相似工程具有一定的借鉴意义。
1边坡工程稳定性分析
1.1边坡稳定性的影响因素①地质构造。地质构造因素主要是指边坡地段的褶皱形态、岩层产状、断层和节理裂隙的发育程度以及新构造运动的特点等。通常在区域构造复杂、褶皱强烈、断层众多、岩体裂隙发育、新构造运动比较活跃的地区,往往岩体破碎、沟谷深切,较大规模的崩塌、滑坡极易发生。②岩体结构。不同结构的岩体,物理力学性质差别很大,边坡变形破坏的性质也不同。③风化作用。边坡岩体,长期暴露在地表,受到水文、气象变化的影响,逐渐产生物理和化学风化作用,出现各种不良现象。当边坡岩体遭受风化作用后,边坡的稳定性大大降低。④地下水。处于水下的透水边坡将承受水的浮托力的作用,使坡体的有效重力减轻;水流冲刷岩坡,可使坡脚出现临空面,上部岩体失去支撑,导致边坡失稳。⑤边坡形态。边坡形态通常指边坡的高度、坡度、平面形状及周边的临空条件等。一般来说,坡高越大,坡度越陡,对稳定性越不利。⑥其他作用。此外,人类的工程作用、气象条件、植被生长状况等因素也会影响边坡的稳定性。
1.2 边坡工程稳定性分析方法
1.2.1边坡极限平衡法。极限平衡法是根据边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)分析边坡各种破坏模式下的受力状态,以及利用边坡滑体上的抗滑力和下滑力之间的关系来评价边坡的稳定性。极限平衡法是边坡稳定分析计算的主要方法,也是工程实践中应用最多的一种方法。
1.2.2边坡可靠性分析法。边坡工程是以岩土体为工程材料,以岩土体天然结构为工程结构,或以堆置物为工程材料,以人工控制结构为工程结构的特殊构筑物。这些构筑物都程度不同地存在组成和结构上的不均匀性,天然边坡尤为突出,因为构成边坡的地质体经受长期的多循环的地质作用,而且作用强度不一,且又错综复杂,致使它们的工程地质性质差异很大。现阶段边坡可靠度分析的常用方法有蒙特卡洛模拟法,可靠指标法,统计矩法以及随机有限元法。
2边坡工程处治技术
2.1抗滑桩技术边坡处置工程中的抗滑桩是通过桩身将上部承受的坡体推力传给桩下部的侧向土体或岩体,依靠桩下部的侧向阻力来承担边坡的下推力,从而使得边坡保持平衡或稳定。抗滑桩与一般桩基类似,但主要承受的是水平荷载。钢筋混凝土桩是目前边坡处治工程广泛采用的桩材,桩断面刚度大,抗弯能力高,施工方式多样,其缺点是混凝土抗拉能力有限。抗滑桩施工最常用的方法是就地灌注桩,机械钻孔速度快,桩径可大可小,适用于各种地质条件;但对地形较陡的边坡工程,机械进入和架设困难较大。钻孔时的水对边坡的稳定也有影响。人工成孔的特点是方便、简单、经济,但速度慢,劳动强度高,遇不良地层(如流沙)时处理相当困难。另外,桩径较小时人工作业面困难。
2.2注浆加固技术注浆加固技术是用液压或气压把能凝固的浆液注入物体的裂缝或孔隙,以改变注浆对象的物理力学性质,从而满足各类土木建筑工程的需要;注浆加固技术的成败与工程问题、地质问题、注浆材料和压浆技术等直接相关,如果忽略其中的任何一个环节,都可能造成注浆工程的失败。工程问题、地质特征是灌浆取得成功的前提,注浆材料和压浆技术是注浆加固技术的关键。
2.3加筋边坡和加筋挡土墙技术加筋土是一种在土中加入加筋材料而形成的复合土。在土中加入加筋材料可以提高土的强度,增强土体的稳定性。因此,凡在土中加入加筋材料而使整个土工系统的力学性能得到改善和提高的土工加固方法均称为土工加筋技术,形成的结构亦称为加筋土结构。和传统支挡结构相比,加筋边坡和加筋挡土墙的特点有:结构新颖、造型美观、技术简单、施工方便、要求较低、节省材料、施工速度快、工期短、造价低廉、效益明显、适应性强、应用广泛等。由于加筋边坡和加筋挡土墙的这些优点,目前其已从公路路堤、路肩发展到应用于其他各种支挡结构和边坡防护。目前已用于处理公路边坡、市政建设、护岸工程、铁道工程路基边坡、工民建配套的支挡及边坡工程、防洪堤、林区工程、工业尾矿坝、渣场、料场、货场等;甚至还用于危险品或危险建筑的围堰设施等。
2.4锚固技术岩土锚固技术是把一种受拉杆件埋入地层中,以提高岩土自身的强度和自稳能力的一门工程技术。由于这种技术大大减轻结构物的自重,节约了工程材料并确保工程的安全和稳定,具有显著的社会效益和经济效益,因而目前在工程中得到极其广泛的应用。锚杆在边坡加固中通常与其他只当结构联合使用,例如以下几种情况:①锚杆与钢筋混凝土桩联合使用,构成钢筋混凝土排桩式锚杆挡墙。排桩可以是钻孔桩、挖孔桩或预置桩;锚杆可以是预应力或非预应力锚杆,预应力锚杆材料多采用钢绞线(预应力锚索)、四级精轧螺纹钢(预应力锚杆)。锚杆的数量根据边坡的高度及推力荷载可采用桩顶单锚点作法和桩身多锚点作法。②锚杆与钢筋混凝土格架联合使用形成钢筋混凝土格架式锚杆挡墙。锚杆锚点设在格架节点上,锚杆可以是预应力锚杆(索)或非预应力锚杆(索)。这种支挡结构主要用于高陡岩石边坡或直立岩石切坡,以阻止岩石边坡因卸荷而失稳。③锚杆与钢筋混凝土板肋联合使用形成钢筋混凝土板肋式锚杆挡墙,这种结构主要用于直立开挖的Ⅲ,Ⅳ类岩石边坡或土质边坡支护,一般采用自上而下的逆作法施工。④锚杆与钢筋混凝土板肋、锚定板联合使用形成锚定板挡墙。这种结构主要用于填方形成的直立土质边坡。
2.5预应力锚索加固技术用高强度、低松驰型钢绞线预应力锚索对滑坡体或崩落体施加一定的预应力,提高它们的刚度,使预应力锚索作用范围的岩石相应挤压,滑动面或岩石裂隙面上摩擦力增大,加强它们的自承能力,可有效地限制岩体的部份变形和位移。
2.6排水工程的设计地表排水工程的设计要求:①填平坑洼、夯实裂缝。坡面产生坑洼和裂缝,往往是滑坡的先兆,也是导致严重滑坡的主要原因。大气降雨、地表水就会汇集在坑洼处或沿着裂缝渗入土层,使土的抗剪强度降低,造成坡体滑动。因此,对坑洼和裂缝应仔细查找,认真夯填。②合理确定截水沟的平面位置。截水沟的平面布置,应尽量顺直,并垂直于径流方向。如遇到山坡有凹地或小沟时,应将凹地填平或与外侧挡土墙相连,内侧与水沟联结,避免水沟内的水流越出或渗入截水沟沟底,导致水沟破坏。应该结合边坡的区域地貌、地形特点,充分利用自然沟谷,在边坡体内外修筑截水沟、平台截水沟、集水沟、排水沟、边沟、急流槽等,形成树杈状、网状排水系统,以迅速引走坡面雨水。
3 结语
论文对常用边坡工程的处治措施进行了初步探讨,指出了常用边坡工程处治措施的适用性,然而随着工程建设规模的不断增大,边坡高度增高,复杂性增大,对边坡处治技术的要求也越来越高。可以预见,随着科学技术的发展,边坡处治技术将得到进一步的发展,并逐步趋于完善。
参考文献:
[1]彭小云,张婷,秦龙.高陡边坡稳定性的影响因素分析[J].高陡边坡稳定性的影响因素分析.2002.
[2]赵明阶,何光春等.边坡工程处治技术[M].北京:人民交通出版社.2003.
[3]郭长庆,梁勇旗等.公路边坡处治技术.北京:中国建筑出版社.2007.5.
鲜花(0) 鸡蛋(0)
flyingegg 发表于 2016-11-28 01:19:58 | 显示全部楼层
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|关于我们|QQ即时充值|站点统计|手机版|小黑屋|百宝箱|留言|咨询|微信订阅|QQ189615688|东南西北人

GMT+8, 2017-6-26 18:22 , Processed in 0.130475 second(s), 35 queries , Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表